Dissimilarity representations allow for building good classifiers

نویسندگان

  • Elzbieta Pekalska
  • Robert P. W. Duin
چکیده

In this paper, a classification task on dissimilarity representations is considered. A traditional way to discriminate between objects represented by dissimilarities is the nearest neighbor method. It suffers, however, from a number of limitations, i.e., high computational complexity, a potential loss of accuracy when a small set of prototypes is used and sensitivity to noise. To overcome these shortcomings, we propose to use a normal density-based classifier constructed on the same representation. We show that such a classifier, based on a weighted combination of dissimilarities, can significantly improve the nearest neighbor rule with respect to the recognition accuracy and computational effort. 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizing Dissimilarity Representations Using Feature Lines

A crucial issue in dissimilarity-based classification is the choice of the representation set. In the small sample case, classifiers capable of a good generalization and the injection or addition of extra information allow to overcome the representational limitations. In this paper, we present a new approach for enriching dissimilarity representations. It is based on the concept of feature line...

متن کامل

On using prototype reduction schemes to optimize dissimilarity-based classification

The aim of this paper is to present a strategy by which a new philosophy for pattern classification, namely that pertaining to dissimilaritybased classifiers (DBCs), can be efficiently implemented. This methodology, proposed by Duin and his co-authors (see Refs. [Experiments with a featureless approach to pattern recognition, Pattern Recognition Lett. 18 (1997) 1159–1166; Relational discriminan...

متن کامل

A new metric for dissimilarity data classification based on Support Vector Machines optimization

Dissimilarities are extremely useful in many real-world pattern classification problems, where the data resides in a complicated, complex space, and it can be very difficult, if not impossible, to find useful feature vector representations. In these cases a dissimilarity representation may be easier to come by. The goal of this work is to provide a new technique based on Support Vector Machines...

متن کامل

Combining Dissimilarity-Based One-Class Classifiers

We address a one-class classification (OCC) problem aiming at detection of objects that come from a pre-defined target class. Since the non-target class is ill-defined, an effective set of features discriminating between the targets and non-targets is hard to obtain. Alternatively, when raw data are available, dissimilarity representations describing an object by its dissimilarities to a set of...

متن کامل

On Combining Dissimilarity Representations

For learning purposes, representations of real world objects can be built by using the concept of dissimilarity (distance). In such a case, an object is characterized in a relative way, i.e. by its dissimilarities to a set of the selected prototypes. Such dissimilarity representations are found to be more practical for some pattern recognition problems. When experts cannot decide for a single d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2002